Joint Advanced Students Seminar 2005 The ElGamal Cryptosystem

Andreas V. Meier

meiera@in.tum.de

TUM Informatik

Structure

- Public Key Cryptography
- Assigned Complexity Problems
- ElGamal Cryptosystem
- Importance of Correct Implementation
- Summary

Public Key Cryptography

Introduced 1976 by Diffie and Hellman

Basic concept: Trapdoor functions (see following presentation)

Features:

- sender verification
- private key part remains at owner
- public key part freely distributable
- no secret channel neccessary
- no pre-shared keys

Prominent representative: RSA (1977) ... and ElGamal

Public Key Cryptography - Procedure

Scenario:

• Alice want's to send an encrypted message to Bob

Procedure

- 1. Bob computes a public and a private key, the keypair
- 2. Bob publishes his public key
- 3. Alice Encrypts the message using Bob's public key
- 4. Alice sends the message to Bob.
- 5. Bob encrypts the message using his private key

Effect:

- Nobody intercepting the message can read
- nor alter it unrecognized

Public Key Cryptography - Scheme

Public Key Cryptography - Algorithm

Two public parameters:

• p: prime number

• g: generator such that $\forall n \in [1; p-1] : \exists k; n = g^k \mod p$ Procedure:

- 1. Alice generates a private random integer *a*
 - Bob generates a private random integer *b*
- 2. Alice generates her public value $g^a \mod p$

• Bob generates his public value $g^b \mod p$

3. • Alice computes $g^{ab} = (g^a)^b \mod p$

• Bob computes $g^{ba} = (g^b)^a \mod p$

4. Both now have a shared secret k since $k = g^{ab} = g^{ba}$

Public Key Cryptography - Summary

Features

- able to set up a secure channel between two parties
- based on the Discrete Logarithm Problem

Problems

- vulnerable to the man-in-the-middle attack
- vulnerable to chosen-plaintext attacks (\rightarrow signed keys)
- not useful for one way communication (e.g. email)

Diffi e-Hellmann Problem – DH

Instance:

- A multiplicative group (G, \cdot) ,
- a generator g of G,
- two public key parts g^a and g^b

Question:

• Find the common key g^{ab}

Discrete Logarithm Problem - DL

Instance:

- A multiplicative group (G, \cdot) ,
- a generator g of G, |G| = n,
- and an element x

Question:

- Find the unique integer a, $0 \le a \le n-1$, such that $g^a = x$.
- $a \operatorname{can} be \operatorname{described} as \log_g x$

Complexity of DL and DH

Lower bound:

• $\Omega(\sqrt{p})$ with p = greatest prime divisor of the group order

Related problem: Decision DH (DDH)

- Instance: the triple g^a , g^b and g^c
- Question: is $c \equiv ab \pmod{p}$?

Algorithms for DL

Given: Generator g of G, $beta \in G$

Wanted: a, 1 < a < p - 1

Assumption: Multiplication of $x, y \in G$ in O(1)

- 1. compute all possible g^i into a list of pairs (i, g^i)
- 2. sort the list wrt. the second coordinate
- 3. given a β , perform a binary search on the list First step: O(n), Second step: $O(n \log n)$, Third step: $O(\log n)$

Neglecting logarithmic factors: Precomputation-time: O(1) Space: O(n), Solving in O(1)

→ Shank, Pollard Rho, Pholig-Hellman

Complexity of DL - Reduction to Addition

So far we had a multiplicative Group (G, *)

Idea: DL in Additive Group (G, +)

ElGamal Cryptosystem

Presented in 1984 by Tather Elgamal

Key aspects:

- Based on the Discrete Logarithm problem
- Randomized encryption

Application:

- Establishing a secure channel for key sharing
- Encrypting messages

ElGamal Cryptosystem - Key Generation

Participant A generates the public/private key pair

- 1. Generate large prime p and generator g of the multiplicative Group \mathbb{Z}_p^* pf of the integers modulo p.
- 2. Select a random integer a, $1 \le a \le p 2$, and compute $g^a \mod p$.
- 3. A's Public key is (p, g, g^a) ; A's Private key is a.

ElGamal Cryptosystem - Encryption Procedure

Participant B encrypts a message m to A

- 1. Obtain A's authentic public key (p, g, g^a) .
- 2. Represent the message as integers m in the range $\{0, 1, \ldots, p-1\}$.
- 3. Select a random integer k, $1 \le k \le p-2$.
- 4. Compute $\gamma = g^k \mod p$ and $\delta = m * (g^a)^k$.
- 5. Send ciphertext $c = (\gamma, \delta)$ to A

ElGamal Cryptosystem - Decryption Procedure

Participant A receives encrypted message m from B

- 1. Use private key a to compute $(\gamma^{p-1-a}) \mod p$. Note: $\gamma^{p-1-a} = \gamma^{-a} = a^{-ak}$
- 2. Recover m by computing $(\gamma^{-a}) * \delta \mod p$.

ElGamal Cryptosystem - Encryption Sample

Alice choses her public key (17, 6, 7):

- Prime p = 17
- Generator g = 6
- Private key part a = 5
- Public key part $g^a \mod p = 6^5 \mod 17 = 7$

Bob encrypts his message m = 13:

- He chooses a random k = 10
- He calculates $\gamma = g^k \mod p = 6^{10} \mod 17 = 15$
- He encrypts $\delta = m * g^k \mod p = (13 * 7^{10}) \mod 17 = 9$

Bob sends $\gamma = 15$ and $\delta = 9$ to Alice.

ElGamal Cryptosystem - Decryption Sample

Alice receives $\gamma=15$ and $\delta=9$ from Bob.

- Her public key is $(p, g, g^a) = (17, 6, 7)$
- Her private key is a = 5

Alice now decrypts the message using her private key:

- Decryption factor $(\gamma^{-a}) * \delta \mod p = 15^{-5} \mod 17 = 15^{11} \mod 17 = 9$
- **Decryption:** $(\delta * 9) \mod p = (9 * 9) \mod 17 = 13$

Alice has now decrypted the message and received: 13

ElGamal Cryptosystem - Summary

Features:

- use of a random factor k for encryption
- variant of DH: shared secret is g^{ak}

Problems:

- Duplicates message length
- Depends on intractability of DL and DH

Importance of Correct Implementation - GnuPG Issue

Problem discovered late 2003 by Phong Q. Nguyen in GnuPG

- Too small private exponent and
- too short nonce used for signature generation.
- Present for almost four years!

Effects

• All signatures created with GnuPG up to the day of fix considered compromised

Importance of Correct Implementation - Code Sample

```
/* IMO using a k much lesser than p is sufficient and it greatly
 * improves the encryption performance. We use Wiener's table
 * and add a large safety margin.
 */
nbits = wiener_map( orig_nbits ) * 3 / 2;
nbytes = (nbits+7)/8;
```

Wiener Table:

p	512	768	1024	1280	1536	1792	2048	2304	• • •
q_{bit}	119	145	165	183	198	212	225	237	• • •

Small k in signature \rightarrow lattice attack

Summary

What have we heared in this presentation?

- Public Key scheme suitable for sharing symetric keys
- Discrete Logarithm Problem even harder than FACTORIZE
- ElGamal Cryptosystem
- Importance of correct implementation of cryptosystems

Discussion

- Questions from the audience?
- Why are hybrid cryptosystems used for encrypting e.g. a vpn?

Literature

- Cryptography: Theory and practice, Douglas R. Stinson
- New directions in cryptography, Diffie and Hellman
- Handbook of applied Cryptography, Menezes, van Oorschot, Vanstone
- A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms, Tather Elgamal